EECS 221

S.P. 2-K

For $\mathbf{F}(\mathbf{r})=y z^{2} \hat{\mathbf{a}}_{x}+x z^{2} \hat{\mathbf{a}}_{y}+2 x y z \hat{\mathbf{a}}_{z}$, find the value of $\int_{P_{1}}^{P_{2}} \mathbf{F} \cdot \mathbf{d} \ell$ where $P_{1}=(0,0,0)$, $P_{2}=(1,1,1)$ along
a) A straight path from P_{1} to P_{2}
b) The path $y=x^{2}$ and $z=\sqrt{x}$ from P_{1} to P_{2}
c) Repeat a) and b) by noticing that the vector field $\mathbf{F}(\mathbf{r})$ can be expressed as the gradient of some scalar field $f(\mathbf{r})$.

